Ever since I studied prime tables for the first time, I have always been struck by the factorisations of numbers in the 41st century — slightly above the point at which I have thoroughly memorised my primes:
Factorisations of Numbers Not Divisible by 2 or 5 in 41st Century:
- 4001 is prime
- 4003 is prime
- 4007 is prime
- 4009 = 19 × 211
- 4011 = 3 × 7 × 191
- 4013 is prime
- 4017 = 3 × 13 × 103
- 4019 is prime
- 4021 is prime
- 4023 = 3 × 3 × 3 × 149
- 4027 is prime
- 4029 = 3 × 17 × 79
- 4031 = 29 × 139
- 4033 = 37 × 109
- 4037 = 11 × 367
- 4039 = 7 × 577
- 4041 = 3 × 3 × 449
- 4043 = 13 × 311
- 4047 = 3 × 19 × 71
- 4049 is prime
- 4051 is prime
- 4053 = 3 × 7 × 193
- 4057 is prime
- 4059 = 3 × 3 × 11 × 41
- 4061 = 31 × 131
- 4063 = 17 × 239
- 4067 = 7 × 7 × 83
- 4069 = 13 × 313
- 4071 = 3 × 23 × 59
- 4073 is prime
- 4077 = 3 × 3 × 3 × 151
- 4079 is prime
- 4081 = 7 × 11 × 53
- 4083 = 3 × 1361
- 4087 = 61 × 67
- 4089 = 3 × 29 × 47
- 4091 is prime
- 4093 is prime
- 4097 = 17 × 241
- 4099 is prime
- the 41st century is actually prime-rich, with fifteen primes
- vis-à-vis
- only nine in the 42nd century
- only eleven each in the 39th and 40th centuries
- only twelve in the 38th century
- yet the 4030s and 4060s are the first consecutive decades with k == 1 (mod 3) k such that 10k+1, 10k+3, 10k+7, and 10k+9 are all composite
This peculiar pattern attracted my attention at the time, and continues to do so. It was a while before I actually recognised the pattern found between 4,010 and 4,080 as the peculiarity it was, at least amongst numbers smaller than ten thousand. All odd numbers in the decades with k == 1 (mod 3) are composite, whereas excluding 4,043 all numbers not divisible by 2, 3 or 5 in decades with k ≠≠ 1 (mod 3) are primes. Some years ago, I searched for similar patterns, and found and memorised two others in the ninth and tenth millennia, and one more in the eleventh millennium. Nonetheless, it always interested me to do two things:
- make a large list of groups of three decades analogous to the 4050s, 4060s and 4070s
- see how many primes are actually found in the centuries where these groups occur
To do this, I expressed any decade with k == 1 (mod 3) in the form 15k. Any decade k0 with k == 1 (mod 3) will have the number k5 divisible by 15, and expressible as 15k where k is odd. One could express it as 15(2k+1) where k is an integer but I prefer to use the “established” expression based upon 15k — the simplest available.
Numbers between neighbouring multiples of 15 and not divisible by 2, 3, or 5 have the formulae:
- 15k±14
- 15k±8
- 15k±4
- 15k±2
- all four numbers in 1) and 2) above are prime, but
- all four numbers in 3) and 4) are composite
Below are tabulated all such decades in the first three million natural numbers:
ks less than three million such that 15k-14, 15k-8, 15k+8 and 15k+14 are all prime, but 15k-4, 15k-2, 15k+2 and 15k+4 are all composite:
n | k | p1 | p2 | p3 | p4 | Prime count for century/centuries |
|
1 | 271 | 4051 | 4057 | 4073 | 4079 | 15 | |
2 | 577 | 8641 | 8647 | 8663 | 8669 | 13 | |
3 | 661 | 9901 | 9907 | 9923 | 9929 | 9 | |
4 | 725 | 10861 | 10867 | 10883 | 10889 | 10 | |
5 | 831 | 12451 | 12457 | 12473 | 12479 | 13 | |
6 | 907 | 13591 | 13597 | 13613 | 13619 | 8 | 12 |
7 | 2195 | 32911 | 32917 | 32933 | 32939 | 13 | |
8 | 2579 | 38671 | 38677 | 38693 | 38699 | 12 | |
9 | 3195 | 47911 | 47917 | 47933 | 47939 | 11 | |
10 | 3279 | 49171 | 49177 | 49193 | 49199 | 12 | |
11 | 4681 | 70201 | 70207 | 70223 | 70229 | 10 | |
12 | 4939 | 74071 | 74077 | 74093 | 74099 | 9 | |
13 | 5169 | 77521 | 77527 | 77543 | 77549 | 13 | |
14 | 5357 | 80341 | 80347 | 80363 | 80369 | 8 | |
15 | 6661 | 99901 | 99907 | 99923 | 99929 | 8 | |
16 | 7409 | 111121 | 111127 | 111143 | 111149 | 9 | |
17 | 7639 | 114571 | 114577 | 114593 | 114599 | 6 | |
18 | 9713 | 145681 | 145687 | 145703 | 145709 | 9 | 10 |
19 | 12037 | 180541 | 180547 | 180563 | 180569 | 8 | |
20 | 14087 | 211291 | 211297 | 211313 | 211319 | 11 | 8 |
21 | 14597 | 218941 | 218947 | 218963 | 218969 | 9 | |
22 | 15495 | 232411 | 232417 | 232433 | 232439 | 10 | |
23 | 15991 | 239851 | 239857 | 239873 | 239879 | 10 | |
24 | 16159 | 242371 | 242377 | 242393 | 242399 | 7 | |
25 | 16305 | 244561 | 244567 | 244583 | 244589 | 9 | |
26 | 16455 | 246811 | 246817 | 246833 | 246839 | 8 | |
27 | 17365 | 260461 | 260467 | 260483 | 260489 | 10 | |
28 | 17509 | 262621 | 262627 | 262643 | 262649 | 9 | |
29 | 17589 | 263821 | 263827 | 263843 | 263849 | 11 | |
30 | 18601 | 279001 | 279007 | 279023 | 279029 | 6 | |
31 | 18981 | 284701 | 284707 | 284723 | 284729 | 13 | |
32 | 19833 | 297481 | 297487 | 297503 | 297509 | 8 | 6 |
33 | 20071 | 301051 | 301057 | 301073 | 301079 | 7 | |
34 | 20669 | 310021 | 310027 | 310043 | 310049 | 8 | |
35 | 20725 | 310861 | 310867 | 310883 | 310889 | 9 | |
36 | 21163 | 317431 | 317437 | 317453 | 317459 | 9 | |
37 | 22857 | 342841 | 342847 | 342863 | 342869 | 10 | |
38 | 23075 | 346111 | 346117 | 346133 | 346139 | 8 | |
39 | 24937 | 374041 | 374047 | 374063 | 374069 | 10 | |
40 | 25651 | 384751 | 384757 | 384773 | 384779 | 8 | |
41 | 25849 | 387721 | 387727 | 387743 | 387749 | 8 | |
42 | 25883 | 388231 | 388237 | 388253 | 388259 | 7 | |
43 | 26115 | 391711 | 391717 | 391733 | 391739 | 8 | |
44 | 26301 | 394501 | 394507 | 394523 | 394529 | 8 | |
45 | 27625 | 414361 | 414367 | 414383 | 414389 | 9 | |
46 | 31433 | 471481 | 471487 | 471503 | 471509 | 7 | 9 |
47 | 31461 | 471901 | 471907 | 471923 | 471929 | 9 | |
48 | 31917 | 478741 | 478747 | 478763 | 478769 | 9 | |
49 | 32471 | 487051 | 487057 | 487073 | 487079 | 10 | |
50 | 32869 | 493021 | 493027 | 493043 | 493049 | 11 | |
51 | 33379 | 500671 | 500677 | 500693 | 500699 | 6 | |
52 | 33847 | 507691 | 507697 | 507713 | 507719 | 7 | 7 |
53 | 34543 | 518131 | 518137 | 518153 | 518159 | 11 | |
54 | 35123 | 526831 | 526837 | 526853 | 526859 | 6 | |
55 | 36165 | 542461 | 542467 | 542483 | 542489 | 8 | |
56 | 36895 | 553411 | 553417 | 553433 | 553439 | 9 | |
57 | 38231 | 573451 | 573457 | 573473 | 573479 | 10 | |
58 | 38371 | 575551 | 575557 | 575573 | 575579 | 9 | |
59 | 42313 | 634681 | 634687 | 634703 | 634709 | 8 | 9 |
60 | 42563 | 638431 | 638437 | 638453 | 638459 | 7 | |
61 | 42599 | 638971 | 638977 | 638993 | 638999 | 7 | |
62 | 43433 | 651481 | 651487 | 651503 | 651509 | 7 | 4 |
63 | 43691 | 655351 | 655357 | 655373 | 655379 | 9 | |
64 | 44083 | 661231 | 661237 | 661253 | 661259 | 7 | |
65 | 47633 | 714481 | 714487 | 714503 | 714509 | 5 | 10 |
66 | 49437 | 741541 | 741547 | 741563 | 741569 | 7 | |
67 | 49453 | 741781 | 741787 | 741803 | 741809 | 4 | 10 |
68 | 50493 | 757381 | 757387 | 757403 | 757409 | 8 | 8 |
69 | 50859 | 762871 | 762877 | 762893 | 762899 | 8 | |
70 | 51371 | 770551 | 770557 | 770573 | 770579 | 12 | |
71 | 52125 | 781861 | 781867 | 781883 | 781889 | 9 | |
72 | 53015 | 795211 | 795217 | 795233 | 795239 | 8 | |
73 | 53399 | 800971 | 800977 | 800993 | 800999 | 9 | |
74 | 55731 | 835951 | 835957 | 835973 | 835979 | 11 | |
75 | 57075 | 856111 | 856117 | 856133 | 856139 | 9 | |
76 | 59243 | 888631 | 888637 | 888653 | 888659 | 9 | |
77 | 59265 | 888961 | 888967 | 888983 | 888989 | 9 | |
78 | 60237 | 903541 | 903547 | 903563 | 903569 | 5 | |
79 | 60505 | 907561 | 907567 | 907583 | 907589 | 7 | |
80 | 61359 | 920371 | 920377 | 920393 | 920399 | 7 | |
81 | 63375 | 950611 | 950617 | 950633 | 950639 | 10 | |
82 | 64285 | 964261 | 964267 | 964283 | 964289 | 11 | |
83 | 65621 | 984301 | 984307 | 984323 | 984329 | 13 | |
84 | 66357 | 995341 | 995347 | 995363 | 995369 | 12 | |
85 | 66393 | 995881 | 995887 | 995903 | 995909 | 4 | 9 |
86 | 69289 | 1039321 | 1039327 | 1039343 | 1039349 | 7 | |
87 | 69345 | 1040161 | 1040167 | 1040183 | 1040189 | 11 | |
88 | 70395 | 1055911 | 1055917 | 1055933 | 1055939 | 8 | |
89 | 70681 | 1060201 | 1060207 | 1060223 | 1060229 | 8 | |
90 | 71915 | 1078711 | 1078717 | 1078733 | 1078739 | 7 | |
91 | 72319 | 1084771 | 1084777 | 1084793 | 1084799 | 8 | |
92 | 72693 | 1090381 | 1090387 | 1090403 | 1090409 | 5 | 10 |
93 | 73565 | 1103461 | 1103467 | 1103483 | 1103489 | 7 | |
94 | 73881 | 1108201 | 1108207 | 1108223 | 1108229 | 8 | |
95 | 77535 | 1163011 | 1163017 | 1163033 | 1163039 | 10 | |
96 | 78327 | 1174891 | 1174897 | 1174913 | 1174919 | 7 | 6 |
97 | 79861 | 1197901 | 1197907 | 1197923 | 1197929 | 9 | |
98 | 80069 | 1201021 | 1201027 | 1201043 | 1201049 | 11 | |
99 | 81429 | 1221421 | 1221427 | 1221443 | 1221449 | 8 | |
100 | 82079 | 1231171 | 1231177 | 1231193 | 1231199 | 7 | |
101 | 82353 | 1235281 | 1235287 | 1235303 | 1235309 | 7 | 8 |
102 | 82771 | 1241551 | 1241557 | 1241573 | 1241579 | 8 | |
103 | 83645 | 1254661 | 1254667 | 1254683 | 1254689 | 11 | |
104 | 84991 | 1274851 | 1274857 | 1274873 | 1274879 | 6 | |
105 | 86089 | 1291321 | 1291327 | 1291343 | 1291349 | 10 | |
106 | 88239 | 1323571 | 1323577 | 1323593 | 1323599 | 9 | |
107 | 88259 | 1323871 | 1323877 | 1323893 | 1323899 | 6 | |
108 | 89045 | 1335661 | 1335667 | 1335683 | 1335689 | 9 | |
109 | 89231 | 1338451 | 1338457 | 1338473 | 1338479 | 9 | |
110 | 91647 | 1374691 | 1374697 | 1374713 | 1374719 | 9 | 8 |
111 | 91733 | 1375981 | 1375987 | 1376003 | 1376009 | 7 | 6 |
112 | 92339 | 1385071 | 1385077 | 1385093 | 1385099 | 11 | |
113 | 93299 | 1399471 | 1399477 | 1399493 | 1399499 | 10 | |
114 | 94749 | 1421221 | 1421227 | 1421243 | 1421249 | 8 | |
115 | 94769 | 1421521 | 1421527 | 1421543 | 1421549 | 6 | |
116 | 95847 | 1437691 | 1437697 | 1437713 | 1437719 | 8 | 7 |
117 | 96273 | 1444081 | 1444087 | 1444103 | 1444109 | 6 | 5 |
118 | 97827 | 1467391 | 1467397 | 1467413 | 1467419 | 9 | 6 |
119 | 99377 | 1490641 | 1490647 | 1490663 | 1490669 | 10 | |
120 | 101047 | 1515691 | 1515697 | 1515713 | 1515719 | 6 | 9 |
121 | 102373 | 1535581 | 1535587 | 1535603 | 1535609 | 7 | 8 |
122 | 104613 | 1569181 | 1569187 | 1569203 | 1569209 | 9 | 7 |
123 | 104655 | 1569811 | 1569817 | 1569833 | 1569839 | 7 | |
124 | 107669 | 1615021 | 1615027 | 1615043 | 1615049 | 8 | |
125 | 108301 | 1624501 | 1624507 | 1624523 | 1624529 | 7 | |
126 | 108727 | 1630891 | 1630897 | 1630913 | 1630919 | 8 | 6 |
127 | 109175 | 1637611 | 1637617 | 1637633 | 1637639 | 9 | |
128 | 111675 | 1675111 | 1675117 | 1675133 | 1675139 | 8 | |
129 | 112369 | 1685521 | 1685527 | 1685543 | 1685549 | 9 | |
130 | 115747 | 1736191 | 1736197 | 1736213 | 1736219 | 9 | 8 |
131 | 116363 | 1745431 | 1745437 | 1745453 | 1745459 | 8 | |
132 | 118393 | 1775881 | 1775887 | 1775903 | 1775909 | 7 | 6 |
133 | 118407 | 1776091 | 1776097 | 1776113 | 1776119 | 8 | 7 |
134 | 119779 | 1796671 | 1796677 | 1796693 | 1796699 | 6 | |
135 | 119927 | 1798891 | 1798897 | 1798913 | 1798919 | 7 | 10 |
136 | 121371 | 1820551 | 1820557 | 1820573 | 1820579 | 9 | |
137 | 122253 | 1833781 | 1833787 | 1833803 | 1833809 | 9 | 6 |
138 | 122561 | 1838401 | 1838407 | 1838423 | 1838429 | 6 | |
139 | 123471 | 1852051 | 1852057 | 1852073 | 1852079 | 10 | |
140 | 123797 | 1856941 | 1856947 | 1856963 | 1856969 | 11 | |
141 | 123967 | 1859491 | 1859497 | 1859513 | 1859519 | 8 | 8 |
142 | 124217 | 1863241 | 1863247 | 1863263 | 1863269 | 7 | |
143 | 125477 | 1882141 | 1882147 | 1882163 | 1882169 | 7 | |
144 | 127957 | 1919341 | 1919347 | 1919363 | 1919369 | 8 | |
145 | 128103 | 1921531 | 1921537 | 1921553 | 1921559 | 6 | |
146 | 129713 | 1945681 | 1945687 | 1945703 | 1945709 | 10 | 10 |
147 | 130765 | 1961461 | 1961467 | 1961483 | 1961489 | 10 | |
148 | 131665 | 1974961 | 1974967 | 1974983 | 1974989 | 7 | |
149 | 134249 | 2013721 | 2013727 | 2013743 | 2013749 | 12 | |
150 | 135615 | 2034211 | 2034217 | 2034233 | 2034239 | 8 | |
151 | 136355 | 2045311 | 2045317 | 2045333 | 2045339 | 10 | |
152 | 137259 | 2058871 | 2058877 | 2058893 | 2058899 | 12 | |
153 | 139165 | 2087461 | 2087467 | 2087483 | 2087489 | 8 | |
154 | 140191 | 2102851 | 2102857 | 2102873 | 2102879 | 10 | |
155 | 140949 | 2114221 | 2114227 | 2114243 | 2114249 | 8 | |
156 | 141703 | 2125531 | 2125537 | 2125553 | 2125559 | 8 | |
157 | 142329 | 2134921 | 2134927 | 2134943 | 2134949 | 7 | |
158 | 142999 | 2144971 | 2144977 | 2144993 | 2144999 | 6 | |
159 | 145953 | 2189281 | 2189287 | 2189303 | 2189309 | 9 | 11 |
160 | 146613 | 2199181 | 2199187 | 2199203 | 2199209 | 9 | 8 |
161 | 149215 | 2238211 | 2238217 | 2238233 | 2238239 | 9 | |
162 | 149531 | 2242951 | 2242957 | 2242973 | 2242979 | 8 | |
163 | 151099 | 2266471 | 2266477 | 2266493 | 2266499 | 9 | |
164 | 151609 | 2274121 | 2274127 | 2274143 | 2274149 | 7 | |
165 | 153193 | 2297881 | 2297887 | 2297903 | 2297909 | 8 | 8 |
166 | 153967 | 2309491 | 2309497 | 2309513 | 2309519 | 7 | 5 |
167 | 154157 | 2312341 | 2312347 | 2312363 | 2312369 | 6 | |
168 | 155675 | 2335111 | 2335117 | 2335133 | 2335139 | 8 | |
169 | 157939 | 2369071 | 2369077 | 2369093 | 2369099 | 6 | |
170 | 159301 | 2389501 | 2389507 | 2389523 | 2389529 | 10 | |
171 | 159717 | 2395741 | 2395747 | 2395763 | 2395769 | 7 | |
172 | 161481 | 2422201 | 2422207 | 2422223 | 2422229 | 10 | |
173 | 166583 | 2498731 | 2498737 | 2498753 | 2498759 | 8 | |
174 | 169223 | 2538331 | 2538337 | 2538353 | 2538359 | 11 | |
175 | 169229 | 2538421 | 2538427 | 2538443 | 2538449 | 11 | |
176 | 169983 | 2549731 | 2549737 | 2549753 | 2549759 | 7 | |
177 | 172063 | 2580931 | 2580937 | 2580953 | 2580959 | 8 | |
178 | 173239 | 2598571 | 2598577 | 2598593 | 2598599 | 10 | |
179 | 173365 | 2600461 | 2600467 | 2600483 | 2600489 | 7 | |
180 | 175499 | 2632471 | 2632477 | 2632493 | 2632499 | 8 | |
181 | 175541 | 2633101 | 2633107 | 2633123 | 2633129 | 7 | |
182 | 175863 | 2637931 | 2637937 | 2637953 | 2637959 | 9 | |
183 | 176369 | 2645521 | 2645527 | 2645543 | 2645549 | 12 | |
184 | 176545 | 2648161 | 2648167 | 2648183 | 2648189 | 8 | |
185 | 179659 | 2694871 | 2694877 | 2694893 | 2694899 | 11 | |
186 | 180269 | 2704021 | 2704027 | 2704043 | 2704049 | 6 | |
187 | 180911 | 2713651 | 2713657 | 2713673 | 2713679 | 7 | |
188 | 182753 | 2741281 | 2741287 | 2741303 | 2741309 | 10 | 6 |
189 | 184767 | 2771491 | 2771497 | 2771513 | 2771519 | 6 | 7 |
190 | 186363 | 2795431 | 2795437 | 2795453 | 2795459 | 10 | |
191 | 187577 | 2813641 | 2813647 | 2813663 | 2813669 | 9 | |
192 | 187953 | 2819281 | 2819287 | 2819303 | 2819309 | 6 | 7 |
193 | 189249 | 2838721 | 2838727 | 2838743 | 2838749 | 7 | |
194 | 189745 | 2846161 | 2846167 | 2846183 | 2846189 | 7 | |
195 | 194899 | 2923471 | 2923477 | 2923493 | 2923499 | 10 | |
196 | 194917 | 2923741 | 2923747 | 2923763 | 2923769 | 7 | |
197 | 196087 | 2941291 | 2941297 | 2941313 | 2941319 | 8 | 7 |
198 | 196149 | 2942221 | 2942227 | 2942243 | 2942249 | 10 | |
199 | 197117 | 2956741 | 2956747 | 2956763 | 2956769 | 8 | |
200 | 197335 | 2960011 | 2960017 | 2960033 | 2960039 | 7 | |
201 | 199937 | 2999041 | 2999047 | 2999063 | 2999069 | 6 |
Given that 4,043 is divides by thirteen and not seven, there should exist a possibility of two consecutive odd k in the table above, but there exist none less than three million, although fifty-six cases of gaps of sixteen following two consecutive numbers of the form 15k-8 occur in that range. There is even one case of gaps of sixteen after three successive (prime) numbers of form 15k-8 — after the primes 2,492,767, 2,492,797 and 2,492,827. Again, though, this sequence covers two seven-prime centuries, making the strange 41st century pattern still unique. This uniqueness extends as far as century patterns have been tabulated: no century repeating the prime pattern from 4,000 to 4,099 exists below 1017.