In order to see whether centuries with abnormally few primes actually have few “potential” primes, I have aimed to test the modulus (3003) of every century up to ten million that has a record-low or equal-record-low number of primes (compared to smaller centuries only of course). These centuries, with their modulus (3003) and “potential” primes, are tabulated below
k | Total primes | mod (3003) | Total possible primes |
...1 | ...3 | ...7 | ...9 |
---|---|---|---|---|---|---|---|
2 | 16 | 2 | 17 | 5 | 5 | 3 | 4 |
3 | 16 | 3 | 19 | 4 | 5 | 6 | 4 |
5 | 14 | 5 | 18 | 4 | 4 | 5 | 5 |
7 | 14 | 7 | 19 | 4 | 5 | 4 | 6 |
9 | 14 | 9 | 18 | 6 | 3 | 6 | 3 |
11 | 12 | 11 | 17 | 4 | 5 | 3 | 5 |
13 | 11 | 13 | 18 | 4 | 5 | 5 | 4 |
21 | 10 | 21 | 15 | 4 | 5 | 3 | 3 |
24 | 10 | 24 | 18 | 4 | 3 | 6 | 5 |
31 | 10 | 31 | 20 | 6 | 4 | 5 | 5 |
41 | 9 | 41 | 17 | 4 | 4 | 5 | 4 |
43 | 9 | 43 | 21 | 4 | 5 | 6 | 6 |
48 | 8 | 48 | 19 | 7 | 4 | 5 | 3 |
59 | 7 | 59 | 19 | 3 | 6 | 5 | 5 |
95 | 7 | 95 | 18 | 4 | 5 | 5 | 4 |
142 | 7 | 142 | 20 | 4 | 5 | 5 | 6 |
165 | 7 | 165 | 18 | 5 | 3 | 5 | 5 |
167 | 7 | 167 | 19 | 5 | 3 | 5 | 6 |
186 | 6 | 186 | 17 | 5 | 3 | 5 | 4 |
188 | 5 | 188 | 17 | 3 | 4 | 5 | 5 |
273 | 5 | 273 | 20 | 6 | 5 | 5 | 4 |
314 | 4 | 314 | 17 | 3 | 5 | 4 | 5 |
356 | 4 | 356 | 19 | 5 | 4 | 6 | 4 |
524 | 4 | 524 | 18 | 4 | 4 | 6 | 4 |
588 | 3 | 588 | 19 | 5 | 5 | 4 | 5 |
695 | 3 | 695 | 17 | 5 | 4 | 4 | 4 |
797 | 3 | 797 | 16 | 4 | 3 | 5 | 4 |
1430 | 3 | 1430 | 17 | 5 | 5 | 3 | 4 |
1559 | 1 | 1559 | 17 | 4 | 5 | 4 | 4 |
2683 | 1 | 2683 | 20 | 5 | 4 | 4 | 7 |
4133 | 1 | 1130 | 17 | 5 | 6 | 3 | 3 |
10048 | 1 | 1039 | 20 | 5 | 6 | 5 | 4 |
11400 | 1 | 2391 | 18 | 5 | 3 | 5 | 5 |
12727 | 1 | 715 | 21 | 5 | 5 | 7 | 4 |
12800 | 1 | 788 | 19 | 3 | 6 | 5 | 5 |
13572 | 1 | 1560 | 21 | 6 | 4 | 6 | 5 |
14223 | 1 | 2211 | 19 | 6 | 4 | 4 | 5 |
14443 | 1 | 2431 | 19 | 5 | 3 | 6 | 5 |
14514 | 1 | 2502 | 16 | 3 | 4 | 5 | 4 |
14680 | 1 | 2668 | 21 | 5 | 5 | 6 | 5 |
14913 | 1 | 2901 | 19 | 4 | 4 | 6 | 5 |
15536 | 1 | 521 | 19 | 4 | 7 | 4 | 4 |
15619 | 1 | 604 | 20 | 5 | 4 | 4 | 7 |
16538 | 1 | 1523 | 17 | 4 | 6 | 3 | 4 |
16557 | 1 | 1542 | 18 | 5 | 4 | 5 | 4 |
16718 | 0 | 1703 | 20 | 6 | 6 | 3 | 5 |
26378 | 0 | 2354 | 17 | 5 | 5 | 3 | 4 |
31173 | 0 | 1143 | 17 | 4 | 4 | 5 | 4 |
39336 | 0 | 297 | 18 | 3 | 4 | 6 | 5 |
46406 | 0 | 1361 | 18 | 5 | 5 | 4 | 4 |
46524 | 0 | 1479 | 17 | 4 | 3 | 6 | 4 |
51782 | 0 | 731 | 17 | 4 | 6 | 3 | 4 |
55187 | 0 | 1133 | 16 | 3 | 4 | 4 | 5 |
58374 | 0 | 1317 | 20 | 5 | 6 | 6 | 3 |
58452 | 0 | 1395 | 19 | 6 | 4 | 6 | 3 |
60129 | 0 | 69 | 20 | 6 | 5 | 6 | 3 |
60850 | 0 | 790 | 19 | 5 | 5 | 4 | 5 |
63338 | 0 | 275 | 16 | 4 | 5 | 2 | 5 |
63762 | 0 | 699 | 19 | 5 | 4 | 6 | 4 |
67898 | 0 | 1832 | 17 | 3 | 5 | 4 | 5 |
69587 | 0 | 518 | 20 | 5 | 5 | 3 | 7 |
71299 | 0 | 2230 | 20 | 6 | 4 | 4 | 6 |
75652 | 0 | 577 | 20 | 5 | 5 | 5 | 5 |
78035 | 0 | 2960 | 20 | 4 | 5 | 5 | 6 |
78269 | 0 | 191 | 19 | 5 | 5 | 4 | 5 |
80277 | 0 | 2199 | 18 | 5 | 4 | 5 | 4 |
83674 | 0 | 2593 | 19 | 5 | 4 | 5 | 5 |
84213 | 0 | 129 | 19 | 3 | 5 | 6 | 5 |
89052 | 0 | 1965 | 19 | 6 | 4 | 4 | 5 |
95490 | 0 | 2397 | 17 | 5 | 4 | 5 | 3 |
97080 | 0 | 984 | 18 | 5 | 3 | 5 | 5 |
Results:
If we consider all centuries up to ten million that have an (equal) record low number of primes vis-à-vis preceding centuries, we find that:“Potential primes” | All centuries | % | “Record few” centuries | % | Difference in % | Difference in ratio |
---|---|---|---|---|---|---|
15 | 4 | 0.13% | 1 | 1.41% | 1.28% | 1057.39% |
16 | 46 | 1.53% | 4 | 5.63% | 4.10% | 367.79% |
17 | 244 | 8.13% | 17 | 23.94% | 15.82% | 294.68% |
18 | 580 | 19.31% | 13 | 18.31% | -1.00% | 94.80% |
19 | 954 | 31.77% | 19 | 26.76% | -5.01% | 84.24% |
20 | 725 | 24.14% | 13 | 18.31% | -5.83% | 75.84% |
21 | 336 | 11.19% | 4 | 5.63% | -5.56% | 50.35% |
22 | 88 | 2.93% | 0 | 0.00% | -2.93% | 0.00% |
23 | 26 | 0.87% | 0 | 0.00% | -0.87% | 0.00% |