Thursday, 19 November 2015

Paris still can't get its priorities right
Although I have tried to avoid following the Paris climate negotiations, it has long been clear to me that there is an extremely basic failure in every climate negotiation since Kyōtō that almost nobody recognises.

This being that most global emissions originate, at root, in the mineral resources of a small number of desert nations, who form a discontinuous rim around the southern and western sides of the Indian Ocean. With the gradual exhaustion of more easily smelted chalcophile mineral resources originating from the younger lands of the remainder of the globe, industry – and most especially high technology – can only become more and more dependent upon these desert Indian Rim countries. Indeed, as oil becomes exhausted and electronic technology more and more important, Australia alone will become more and more exclusively the source of mineral wealth for industry, since the vast majority of important minerals for the electronics sector like sand and lanthanide elements come from Australia,. Among present-day continents Australia is uniquely un-depleted in these elements, and their extreme affinity for oxygen means they concentrate to an extreme extent in ancient continental cratons – the Australian Craton alone has 20 percent of the Earth’s total budget of lanthanide elements.

For various political and geographic reasons, these Indian Rim nations – Australia, New Caledonia, Southern Africa and the Persian Gulf States – have generally the highest per capita greenhouse gas emissions in the world even when indirect emissions are counted elsewhere, with only North America and a few small declining industrial nations comparable:
This map shows the nations with the highest per capita greenhouse gas emissions (note New Caledonia – hard to see here – is one of them and also a major biodiversity hotspot)
Even more critically, most greenhouse emissions and much of the worst pollution from non-Indian Rim nations are dependent upon either:
  1. easily exhaustible and soon-to-be-exhausted deposits of more traditional chalcophile elements like lead, zinc or copper or
  2. fossil fuels or lithophile minerals imported from the desert states of the Indian Rim
Extensive mountain building adds elements normally concentrated in the core and colloquially known as “poor metals” – the lower elements of the boron, carbon, nitrogen and oxygen families along with all of the zinc and copper families – to the continental crust of the Enriched World. Glaciation spreads this enrichment to the more geologically stable Enriched lands located poleward of the Alpine Orogeny. (In fact, the Quaternary appears almost designed to ensure all of the northern hemisphere shares in this “poor metal” enrichment). Although this addition does not come from the core but from the mantle – where these “poor metals” are depleted vis-à-vis solar abundances though to a lesser extent than in Precambrian continental cratons – it is so significant that concentrations of “poor metals” in Enriched World soils are essentially non-overlapping with those in Australian soils.

My brother said that most of Australia‘s greenhouse emissions are the result of China’s industrialisation, but I think he has placed the cart before the horse. The ability to smelt and use abundant lithophile metals with very strong bonds with oxygen and hence enrichment in cratonic crust is the cause of industrialisation in East Asia. Asia industrialised preferentially over Latin America and Africa because of its large and consistently growing comparative disadvantage in agriculture, and its greenhouse pollution is small per capita and largely created from Australian, Southern African and Gulf minerals. For this reason, it is clear to me that China’s and India’s emissions are much more dependent upon Australia than the other way round: Australia could develop its own polluting industry without China or India or Europe so much as existing, but East Asia and Europe without lithophile metallurgy and the “Green Revolution” (a contributing factor to Australian emissions due to permitting even poorer land to be cleared) would lack both adequate raw materials for major manufacturing and the comparative disadvantage in agriculture that encourages its development.

Moreover, even if Australia is extremely unfavourably situated geographically for manufacturing, this could well change if environmental regulations in the Enriched World become tougher and those in Australia do not. There must be a point beyond which lower taxes and fewer regulations would overwhelm Australia’s geographic disadvantages in manufacturing industry, especially since excessive regulation leads to the demographic decline which is already well-advanced in Japan and incipient in the rest of the Enriched and Tropical Worlds – thus overcoming the problem of Australia’s small population.

This is why a mere 26 percent cut in Australian emissions is both inadequate and difficult to maintain in the long term.

The usefulness of per capita emissions is a little arbitrary because of demographic differences and human migration, so that I have felt the need to look for something more genuinely “ecological” as an indication of the sustainable energy consumption of a country. Since soil nutrients determine the quality and amount of energy animal can consume, I feel greenhouse emissions per unit of available soil nutrients (very tough to calculate) Australia would have very limited emissions. Australian soils average an order of magnitude less available phosphorus at the surface than Enriched World soils – and the difference increases with depth – so that per unit of soil fertility Australia’s emissions are certainly much higher than most major European nations (e.g. France, Spain) and incomparably higher than most less-developed nations. This difference is of course much, much more extreme if we consider either:
  1. “poor metal” micronutrients (whose importance to Australia’s ecology has been outlined by Gordon Orians and Antoni Milewski in ‘Ecology of Australia: The Effects of Nutrient-Poor Soils and Intense Fires’)
  2. the large proportion of overseas emissions produced by the use of Australian minerals
and consequently it is clear to me that uniquely large cuts in emissions are needed by Australia and Australia alone to fairly pay the costs of global climate change. In the absence of demands these to be paid by Australia’s polluting industries, we are seeing a rapid escalation of climate change with severe costs for those not responsible.

No comments: